Zhihan Gao
Zhihan Gao
Home
Publications
Contact
CV
Light
Dark
Automatic
Transformers
Multi-Modal Learning for Geospatial Vegetation Forecasting
We benchmark a wide range of EarthNet models on the new GreenEarthNet dataset, plus introducing a new transformer-based SOTA: Contextformer.
Vitus Benson
,
Claire Robin
,
Christian Requena-Mesa
,
Lazaro Alonso
,
Nuno Carvalhais
,
José Cortés
,
Zhihan Gao
,
Nora Linscheid
,
Mélanie Weynants
,
Markus Reichstein
PDF
Cite
Code
Dataset
Earthformer: Exploring Space-Time Transformers for Earth System Forecasting
We propose Earthformer with novel generic building blocks “Cuboid Attention” to explore the design of space-time attention for Earth system forecasting problems, and achieve SOTA performance on two synthetic datasets and two real-world benchmarks.
Zhihan Gao
,
Xingjian Shi
,
Hao Wang
,
Yi Zhu
,
Yuyang Wang
,
Mu Li
,
Dit-Yan Yeung
PDF
Cite
Code
Poster
Video
Cite
×